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ABSTRACT 
A  novel feed forward neural network is used  to classify hyperspectral data from the AVIRIS sensor. The network
applies an alternating direction singular value decomposition technique to achieve rapid training times (few seconds
per class). Very few samples (10-12) are required for training. 100% accurate classification is obtained using test data
sets. The methodology combines this rapid training neural network together with data reduction and maximal feature
separation techniques such as principal component analysis and simultaneous diagonalization of covariance
matrices, for rapid and accurate classification of large hyperspectral images. The results are compared to those of
standard statistical classifiers.

Keywords: Neural Networks, Hyperspectral Image Classification, Feature/Class Separation1.

1. INTRODUCTION

An important issue associated with classifying hyperspectral images is the large size of data produced by current
hyperspectral imaging systems. While sensors like LANDSAT’s TM produce data cubes with only 7 bands per pixel,
more recent sensors record the spectra of individual pixels with increasing spectral resolution. Sensors like AVIRIS,
HYDICE and the TRW Hyperspectral Imager (HSI) measure pixel spectra in 224, 210 and 348 bands respectively.
Ultraspectral sensors based on Fourier transform spectrometers, perform measurements at even higher resolution.
Using such high resolution data for image classification increases the dimensionality of the problem,  and hence the
complexity and computation time, significantly.

The advantages of neural network (NN) based approaches for classifying hyperspectral images have been
recognized for a while.1-6 NNs are considered to be powerful classification tools because of their nonlinear properties
and the fact that they make no assumptions about the distribution of the data. This feature is useful in cases where
no simple phenomenological model exists to accurately describe the underlying physical process that determines the
data distribution. Yet the use of NN for hyperspectral image classification has been limited primarily due to the
inordinately long time required to train NN. During training, feed forward networks use a gradient descent method for
least squares error back propagation.7 Recently, radically different approaches to error minimization have been
considered that employ a Householder transform combined with QR factorization or other iterative schemes.8-11 The
NN used in this work is a feed forward type of network that builds on the least squares paradigm. However, it
introduces solutions involving a sequence of alternating directions singular value decompositions (ADSVD) for error
minimization, which drastically reduces the error convergence time.12 As a result, rapid training of  the NN on large
hyperspectral data sets is now possible . 
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In addition to the rapid convergence property of the ADSVD NN, training time is significantly decreases by using
data reduction schemes. Techniques like principal component analysis and simu ltaneous diagonalization of
covariance matrices decrease the training time by reducing the problem dimension (by factor of 20 to 50). They also
improve classification accuracy by enhancing the separation between classes. A substantial reduction in the training
time of feed forward networks is also attained by utilizing the concept of sub-networks. The idea here is to train a
single network to identify one particular class only instead of using a one network to identify all classes. Taken
together, the data reduction and sub-network schemes not only reduces the training time drastically but also improve
the classification accuracy.13 This  combined methodology of the ADSVD NN together with data reduction/feature
separation and using the sub-network concept yielded excellent results. For a limited test set selected from the
Moffett Field image acquired by the AVIRIS sensor (224 bands), we achieved extremely rapid training times (few
seconds per class) and 100% classification accuracy, using no more than a dozen pixels/class for training.  All
computations were performed on a PC platform (200 MHz Pentium Pro with 64 Mbytes RAM). 

The next section discusses the transformation techniques employed in this work. Following that, we present the
ADSVD NN classification results of the Moffett field data cube acquired using the AVIRIS sensor. Our results are
then compared with those of conventional classifiers available in remote sensing software tools like ENVI.

2. ANALYSIS

Principal component analysis (PCA) is a linear coordinate transformation technique to represent a data set in a
reference frame where the variables (spectral bands in our case) are no longer correlated.14-16 The process of
determining the new coordinate axes involves diagonalizing the covariance matrix of the data. Since the off diagonal
elements of this matrix measure the correlations between bands, we compute a coordinate transformation in which
these terms are zero; i.e. a transformation that diagonalizes the covariance matrix. From linear algebra, there exists an
orthonormal transformation capable of diagonalizing the covariance matrix as it is symmetric.17,18

The new axes (or principal components) are organized so as to indicate the directions of decreasing variance in the
data. Hence by retaining only the first few principal axes (corresponding to directions of maximum variance) to
represent the data and discarding the rest, we obtain not only maximal feature separation but also a substantial
reduction in the dimensionality of the data set. Physically, the reduced dimensionality means that in order to identify
K distinct classes of objects with spectra in N bands (where N >> K),  we require at the most K distinct coordinate
axes, and often fewer than K. PCA computes these axes. 

With data classification as the final goal, the covariance matrix is computed  using all the pixels from the selected
regions of interest (ROIs) for each class. Note that each pixel represents an N dimensional vector x (N = # bands =
224 for the AVIRIS sensor). Let K be the number of classes, Mk be the number of pixels in class k  and M be the total
number of pixels where M =  .  The mean vector of this set, m is denoted by Sk=1

K Mk

        (1)m = E(x) = 1
M Si=1

M x i

where E(x) is the expectation of  x.  The covariance matrix of the data set (ROIs), Σx, is given by

         (2)Sx = E{(x − m)(x − m)T} = 1
M Si=1

M (x i − m)(x i − m)T

Diagonalizing this covariance matrix gives the required transformation matrix, G. The eigenvectors (columns of G)
corresponding to the largest few eigenvalues correspond to the axes of maximal variance. The data show very little
variance (i.e. no useful separation amongst classes) along the remaining principal directions (eigenvectors). Hence
data along these axes are not useful for classification. The transformed data may therefore be computed after zeroing
all but the first few eigenvectors:

         (3)y = GT(L)x
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where L is the number of eigenvectors retained in the transformation. Hence the dimension of a transformed pixel, y,
is L and the data reduction factor is N/L. 

An important point to note about PCA is that while it computes the axes of maximum overall variance, there is no
guarantee that it will actually increase the separation between a particular pair of classes. It only guarantees to
maximize the overall variance given by  . In order to ensure maximum separation between classes, therx

2 = G Sx GT

function to be maximized must be sensitive to the class structure. Hence a suitable function would be one that not
only maximizes the variance amongst classes but also simultaneously minimizes the variances within all the classes.
One such a function is given by 14,19,20

          (4)r2 =
rA

2

rW
2 =

rA
2

Sk=1
K rk

2

σA and σW are the amongst class and within class variances respectively and σk is the variance of class k .  These
terms are related to their corresponding covariance matrices ΣA and ΣW  by   

     and               (5)rA
2 = G SA GT rW

2 = G SW GT

where G is the transformation matrix that diagonalizes both  ΣA and ΣW. The detailed expressions for the  Σ’s are

            (6)SA = E{(mk − m0)(mk − m0)T} = ( 1
K ) Sk=1

K (mk − m0)(mk − m0)T

   whereSW = {Sk=1
K (Mk − 1) Sk /M}

              Sk = E{(x k
i − mk)(x k

i − mk)T} = 1
Mk Si=1

Mk (x k
i − mk)(x k

i − mk)T

m0 is the overall means of all the pixels, mk is the mean of class k  and  xi
k is the ith pixel belonging to class k . The

expression in equation (4) is maximized by setting 

         (7)dr2

dG = 0 u (SA − r2 SW)G = 0

This is a generalized eigenvalue (GEV) equation where σ 2 are the eigenvalues and the matrix G contains the
eigenvectors of the transformation. The constraint   (NxN identity matrix) renders the distributionG SW GT = INxN
of all the classes spherical. This process also known as ‘whitening’ is only useful when the distributions of various
classes deviate significantly from a Gaussian. If for example the members of each class are affected by random
gaussian noise only, they will have a spherical distribution to start with. Hence in this case, a  GEV transformation
will not separate the classes better than the PCA. Lastly, for K classes we obtain K-1 non zero eigenvalues from the
GEV and hence K-1 distinct axes (provided N > K). The eigenvectors corresponding to the remaining N-K zero
eigenvalues belong to a degenerate orthogonal subspace.17,18

3. RESULTS
3.1 Maximum Feature Separation
Figure 1 shows an image of the Moffett field data cube recorded using the AVIRIS sensor in 224 bands (0.4 µm to 2.4
µm spectral range). This data are 12 bit digital numbers without any atmospheric corrections for absorption and
scattering. Eight regions of interest (ROIs) are marked in the image for classification (table 1)  Five of these regions (1,
4, 5, 6, 7) are different water bodies ranging from clear water (1) to an evaporation pond (7). The water bodies in
between have different levels of clarity (due to different amounts of particle suspension). Region 3 corresponds to
concrete structures. Regions 2 and 8 are dense and sparse vegetation. Figure 2 shows the average spectrum of each
of the ROIs marked in figure 1. The spectra of some of the ROIs, for example regions (2, 8),  (4, 7) and (5, 6) look very
similar. The entire image is classified to identify pixels belonging to these 8 regions (classes). Similar classes of pixe ls
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have deliberately selected to make the classification problem difficult. Since the average spectra of the pixels from
these classes look very similar, any classification in the spectral domain will most likely produces significant errors.
Classification is therefore performed in the PCA and  GEV transformed domains.

Figure 3  illustrates the advantage of classifying the image in the PCA or GEV transformed feature space, where we
show the average ‘transformed spectra’ of the 8 ROIs in these domains. Only  8 bands are  retained in the PCA case
and 7 for the GEV. The choice of 8 bands for the PCA transform is motivated by the fact that there are only 8 classes
while for the GEV we retain only 7 bands because there are only 7 (K-1 bands where K = 8) non-zero eigenvalues
arising from the simultaneous diagonalization process. We obtain a data reduction factor of about 30 from these
transformations. For classification, we need only the first 4-5 bands where the classes are separated. The last few
bands have been retained to illustrate the fact that the variance amongst classes is negligible along these axes. 

Both the PCA and the GEV transforms enhance the separation between classes as compared with the 224 band
spectral space (figure 2), but the interclass separations are clearly greater using the GEV transformation (figure 3(b)).
This is confirmed by calculating the average interclass separations for the spectral, PCA and GEV spaces using the
angular distance and Fisher discriminant distance as measures (table 2). The columns labeled 1-8 indicate the average
distance between class i and all other classes. The angular separation between classes increases dramatically from
the spectral to the GEV domain where the pixels are nearly collinear in the former and highly separated in the later (90o

separation is orthogonality condition). The Fisher distance is given by the ratio  where dij is the Euclidean
dij

r i
2+rj

2

distance between classes i and j and the σ’s are their respective variances, all calculated in the appropriate domain.
The Fisher distances for all classes but 2 and 3 are greater for the GEV than the PCA. The overall average (last
column) also clearly indicates that the GEV transformation affords greater class separation than the PCA.  A direct
outcome of this is the improved classification results by the NN obtained after training on the GEV transformed data
than on the PCA transformed set.   

3.2 Image Classification by ADSVD Neural Network

The implementation details of the ADSVD NN are discussed elsewhere.12 For the present it suffices to state that it
has as many input nodes as the number of bands of the input data (8 for PCA and 7 for GEV), one hidden layer and a
single output node. The approach we adopt is to compute the PCA and GEV transformation matrices using the ROI
pixels . The entire data cube is then transformed using the appropriate transformation. NN classification is then
performed using the PCA and GEV transformed data cube. We also employ 8 sub-networks for training and
classification. Each of which is trained to identify one particular class only and reject the rest. 

Without independent ground truth to validate the NN classification results, a small fraction of the ROI pixels were
used to train the networks. The remaining pixels from the ROIs were then used to test the classification performance
of the NN.  Specifically, 8-12 randomly selected pixels from each class were used to train the NNs. As a result, a
reasonable number of pixels were left in the ROIs to test the network classification accuracy. 

Table 3 shows the results of testing the NN classifier on the ROIs in the PCA and GEV domains. The classification
threshold is set at 0.5 (middle range of NN’s logistical activation function). A single pixel is processed by each
network and a ‘winner take all’ scheme is employed to assign a pixel to a particular class. A pixel is ‘correctly’
classified if it’s network activation level is the highest of all networks and exceeds the threshold. A ‘miss’ occurs
when a pixel gets incorrectly classified. Lastly, a pixel is ‘unclassified’ if it’s NN has the highest output level of all
networks but it is still less than the threshold. The sum of the correct, missed and unclassified columns equals the
total number of pixels per class. A missed pixel in one class appears as a falsely classified pixel elsewhere. Hence the
sum of the ‘missed’ column equals that of the ‘falsely’ classified one. 

The PCA transformed data are correctly classified for all but classes 2, 5 and 6. There are a few misses in classes 2.
However, most  pixels in class 6 are unclassified and a large number of pixels from class 6 are incorrectly classified
into 5. On the other hand, the NN classifies the GEV transformed data with 100% accuracy. This is not surprising that
the different classes are very well separated in the GEV transformed feature space as is depicted in figure 3(b) and
table 2.     
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Table 4 show the results of the entire Moffett Field image classified by the NN in the PCA and GEV transformed
domains using a threshold level of 0.5. The classified images are not included as they are not useful for viewing
without full color representation.21 While the overall spatial structure of the image is reconstructed in both the PCA
and the GEV classified images, table 4 indicates that the NN identifies more pixels in each class with the GEV
transformed cube  than with the PCA transformed one. The NN barely detects any pixels in class 6 from the PCA
cube  while in the GEV cube, it assigns over 6% of the pixels to this class. From figure 1, it is apparent that there is a
considerable number of pixels belonging to class 6 in the image. The poor NN result for class 6 on the PCA
transformed cube is consistent with the previous result obtained while verifying NN performance on the PCA
transformed ROI’s,  where also the NN failed to detect class 6. Overall, the NN classifies about 50% of the GEV
transformed pixels whereas it classifies only 30% of the pixels in the PCA case. The unclassified pixels are
concentrated in the central portion of the image in both cases  indicating the need to add more training classes from
to this region. 

Lastly, we note that the total computation time for the PCA/GEV transformation on the entire cube is about 10
minutes. The NN takes about 1 minute per class to process the entire cube. Training times is insignificant.

3.3 Supervised ENVI Classification

ENVI classifiers like the parallelepiped (PP), minimum distance (Min-D)  and spectral angle mapper (SAM) are applied
to the AVIRIS cube in the PCA transformed domain, using the same ROI’s for training as before. In order to compare
the ENVI results with those from the NN, the ENVI classification thresholds are adjusted till approximately 50% of the
total number of pixels are classified (which is the number of pixels classified by the NN using the GEV transformed
cube). The lack of ground truth makes it difficult to make absolute performance comparisons but some of obvious
problems of each method can nevertheless be identified.  

Table 5 summarizes the results of the ENVI classifiers. The PP and Min-D methods assign about 30% of the pixels to
class 1. However, a large number of pixels assigned to this class are from the central region of the cube where no
ROIs were selected. In contrast, the NN classifications of the PCA and GEV cubes for  class 1 take a middle ground
with 6% and 14% respectively. Further, the NNs leave the central regions of the image as ‘unclassified’. The SAM  
assigns a negligible number of pixels to class 1, which is clearly incorrect. In class 2, the results from all classifiers are
more or less in agreement. In class 3 (concrete), the Min-D classifier detects very few pixels whereas it is clear from
the image that a large number of pixels belong to this class. The other statistical classifiers tend to agree with the NN
assignments in this case. With classes 4 and 5, all the classifiers (NN and ENVI) assign more pixels to 4 than to 5
although the ratio of pixels assigned to the two classes varies . The SAM violates this trend and assigns over 3 times
as many pixels to class 5 (20%) than to class 4 (6%). With class 6, the ENVI classifier more or less agree with the NN
results from the GEV cube. The NN fails to detect class 6 in the PCA transformed cube. Min-D identifies very few
elements belonging to classes 7 and 8 in the image while PP and SAM identify larger numbers. The latter’s results are
consistent with those of the NN.21 

ENVI takes about 1-2 minutes to classify the image in the PCA domain. The PCA transformed cube (8 bands) was
created externally before feeding it ENVI. Classification in the spectral domain takes 10-15 minutes depending on the
distance measure.

4. SUMMARY

In this paper we have demonstrated the advantage of the GEV technique for class separation and its effect on
classification accuracy. The ADSVD NN which has a very rapid error convergence rate facilitates extremely fast
training of hyperspectral data sets. This NN is also highly robust in that it requires very few samples (10-12) to
encode the features of a particular class. Training the NN in the GEV transformed space not only speeds up training
by reducing the data dimension (by a factor of 30-50) but also improves classification accuracy by maximizing class
separation. The use of sub-networks also contributes to improved classifcaton accuracy and reduced training time.
All the above techniques lead to a methodology that makes the NN a very fast, robust and practical tool for
supervised hyperspectral image classification. 
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Finally, more work needs to be done in terms of validation and comparison of the various techniques. While absolute
comparison of ADSVD NN with statistical classifiers is only possible with ground truth, we have qualitatively
identified some obvious cases where the statistical classifiers produce erroneous results. Previous studies using
synthetic hyperspectral data also verified that the ADSVD NN outperformed the statistical classifiers.13,21 
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water (not as clear
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water with
suspended solid
material

1494
concrete243
dense vegetation 2212
clear water3181

MaterialPixels/
Class

Class #

      
  Table 1:  ROIs for classification.

Figure 1: Moffett field data cube recorded by  AVIRIS sensor in 224 spectral bands covering the range 0.4 µm to 2.4
µm. The RGB composite was  created using bands 45, 31 an 18 respectively. The patches alongside the numbers are
the 8 regions of interest.    
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Figure 2:  Average spectrum of each class created using ROI pixels.
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Figure 3(a): Principal component representation of average ROI spectra. 
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Figure 3(b): Generalized eigenvalue transform representation of average ROI spectra. Interclass separation is better
than with PCA and all classes look distinct.
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Table 2: Class separation of the average ROI spectra measured using the angular separation and Fisher discriminant
distance measures in the spectral, PCA and GEV domains. The separations increase as we go from spectral to GEV
domains.

Classification  Class #  Total # Pixels Correct    Missed UnClassified False Alarms
Domain Per Class

PCA 1 169 169 0 0 4

2 370 366 4 0 0
3 24 24 0 0 0
4 149 149 0 0 0
5 179 177 1 1 97
6 183 2 100 81 0

7 212 212 0 0 0
8 107 107 0 0 4

GEV 1 169 169 0 0 0

2 370 370 0 0 0
3 24 24 0 0 0
4 149 149 0 0 0
5 179 179 0 0 0
6 183 183 0 0 0

7 212 212 0 0 0
8 107 107 0 0 0

Table 3: ADSVD neural network classification of the ROI pixels in the PCA and GEV domains. 
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Class # 1 2 3 4 5 6 7.00 8.00 Overall  Avg

Average Angular Distance (degrees)

SPECTRAL 19.70 31.92 18.33 21.21 21.82 16.56 20.53 23.60 21.71

PCA 32.75 33.25 67.89 37.32 33.02 33.93 56.18 30.74 40.64

GEV 57.79 55.67 75.09 68.43 55.22 57.31 71.26 52.35 61.64

Average Fisher Distance (dimensionless)
SPECTRAL 86.98 154.83 83.41 78.99 80.03 60.80 99.84 80.06 90.62

PCA 122.10 203.19 126.01 104.56 105.35 75.99 136.78 102.80 122.10

GEV 162.65 198.15 56.55 165.26 140.00 128.41 210.36 111.69 146.63



50.9159,99769.9219,709Unclassified

49.1154,37130.194,732Total
Classified

5.818,38313.341,8678
1.85,8010.82,4367
6.620,799~ 0306
2.57,9631.85,7015
10.933,9793.812,0654
5.216,3902.78,6783
26,3381.34,0462
14.344,7186.319,9361

% # Pixels Classified %    # Pixels Classified   Class #

GEV Classified NN PCA Classified NN 

 Table 4: NN classification of the entire PCA and GEV transformed images at 0.5 threshold. The NN classifies nearly
50% of the pixels in the GEV cube and only 30% in the PCA case.

53.149.551.9Unclassified

46.950.548.1Total
Classified

1.40.50.28
0.60.70.27
9.45.13.96
20.81.135
6.12.23.64
6.36.10.23
2.312.22
~ 033.834.81
%     %     % Classified  Class #

SAM PPMin-D
PCA Domain

Table 5: ENVI classified result in the PCA domain. Different thresholding parameters were used in each case so as to
make the total number of classified pixels approximately equal to 50% (same as NN classified results of GEV cube).
The following threshold parameters were used: (Min-D (σ = 4.0), PP (σ = 4.0), SAM (θ  = 0.27 radians). 
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