4. TITLE AND SUBTITLE
Please see attached

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
ERC

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory (AFMC)
AFRL/PRS
5 Pollux Drive
Edwards AFB CA 93524-7048

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

14. ABSTRACT

Approved for public release; distribution unlimited.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT Unclassified
b. ABSTRACT Unclassified
c. THIS PAGE Unclassified

17. LIMITATION OF ABSTRACT

18. NUMBER OF PAGES

19a. NAME OF RESPONSIBLE PERSON
Leilani Richardson

19b. TELEPHONE NUMBER (include area code)
(661) 275-5015

20030206 078
MEMORANDUM FOR PRS (Contractor/In-House Publication)

FROM: PROI (TI) (STINFO) 25 Aug 2000

2001 Meeting of MSS Specialty Group on MD-SEA (Statement A)
(Monterey, CA, 30 Jan – 01 Feb 01) (Submission Deadline: 25 Aug 00)

1. This request has been reviewed by the Foreign Disclosure Office for: a.) appropriateness of distribution statement, b.) military/national critical technology, c.) export controls or distribution restrictions, d.) appropriateness for release to a foreign nation, and e.) technical sensitivity and/or economic sensitivity.
Comments: __

Signature ________________________________ Date ____________

2. This request has been reviewed by the Public Affairs Office for: a.) appropriateness for public release and/or b.) possible higher headquarters review.
Comments: __

Signature ________________________________ Date ____________

3. This request has been reviewed by the STINFO for: a.) changes if approved as amended, b.) appropriateness of distribution statement, c.) military/national critical technology, d.) economic sensitivity, e.) parallel review completed if required, and f.) format and completion of meeting clearance form if required.
Comments: __

Signature ________________________________ Date ____________

4. This request has been reviewed by PRS for: a.) technical accuracy, b.) appropriateness for audience, c.) appropriateness of distribution statement, d.) technical sensitivity and economic sensitivity, e.) military/national critical technology, and f.) data rights and patentability.
Comments: __

Signature ________________________________ Date ____________

APPROVED/APPROVED AS AMENDED/DISAPPROVED

______________________________ Date
PHILIP A. KESSEL
Technical Advisor
Propulsion Science and Advanced Concepts Division
Monocular Passive Ranging Sensitivity Analysis and Error Minimization

Gordon Scriven1, Dr. Nahum Gat1, Dr. Robert Lyons2

1Opto-Knowledge Systems Inc. (OKSI)
2ERC, Inc Edwards AFB

Abstract

Monocular Passive Ranging (MPR) may allow accurate target range estimation even when active measurements or multiple views are not possible. Due to the inherent nature of the MPR solution, the uncertainties may degrade the utility of the range estimate. Proper spectral band selection is essential for error minimization. The study goes beyond the traditional CO2 red spike band for MPR. Featured in the current analysis are the following absorption bands: O2 at 0.76 microns, CO2 at 2.0 and 4.3 microns, and Ozone at 4.7 and 9.6 microns. More importantly, a sensitivity analysis procedure is presented that both minimizes these errors and provides an uncertainty assessment of the range measurement. The result is an improved ranging capability and a more accurate characterization of the intervening atmosphere. The solution technique is applied to an actual HALO/IRIS measurement (Black Brant). However, the MPR software is designed to provide real-time range estimations and atmospheric compensation. A research version of the code has been developed to support integration of this technology into the HALO/IRIS upgrade.

Outline

1. Introduction
2. Solution Technique
 2.1 relevant physics
 2.2 spectral band selection
3. Sensitivity Analysis
 3.1 automatic differentiation (AD)
 3.2 identifying key input parameters
4. Error Minimization
 4.1 pre-flight onboard measurements (local atmosphere, star measurements, ground measurements)
 4.2 response surface (from AD)
 4.3 recursion analysis
 4.4 uncertainty estimation
5. Data Comparison
 5.1 Black Brant measurement from HALO/IRIS
 5.2 data vs. model range estimation
6. Integration into HALO/IRIS Upgrade
 6.1 HALO/IRIS instrumentation description and capabilities
 6.2 Software architecture (HALO/IRIS + MPR)
7. Recommendations
8. Summary
Comments

State-of-the-art Advancement:
Automatic Differentiation (AD) is an emerging technology that is currently under utilized in the field of remote sensing and related phenomena. AD can be applied to existing models for sensitivity analysis. It can also be integrated into the model development itself for improved robustness and more expedient programming.

Key results:
The utilization of multi-spectral sensors, combined with a pre-flight measurement process, extend the envelope of MPR applicability. Previous techniques have broken down for up-looking scenarios. The technique presented in this paper will provide improved ranging capabilities even for some up-looking view geometries.

An accurate MPR technique provides the target trajectory and atmospheric compensation. Both of these are needed for improved target typing, discrimination and tracking.